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Abstract—Grasping with anthropomorphic robotic hands in-
volves much more hand-object interactions compared to parallel-
jaw grippers. Modeling hand-object interactions is essential to
the study of multi-finger hand dextrous manipulation. This work
presents DVGG, an efficient grasp generation network that takes
single-view observation as input and predicts high-quality grasp
configurations for unknown objects. In general, our generative
model consists of three components: 1) Point cloud completion for
the target object based on the partial observation; 2) Diverse sets
of grasps generation given the complete point cloud; 3) Iterative
grasp pose refinement for physically plausible grasp optimization.
To train our model, we build a large-scale grasping dataset that
contains about 300 common object models with 1.5 M annotated
grasps in simulation. Experiments in simulation show that our
model can predict robust grasp poses with a wide variety and high
success rate. Real robot platform experiments demonstrate that
the model trained on our dataset performs well in the real world.
Remarkably, our method achieves a grasp success rate of 70.7%
for novel objects in the real robot platform, which is a significant
improvement over the baseline methods.

Index Terms—Deep learning in grasping and manipulation,
multifingered hands, computer vision for automation, point cloud
completion, iterative refinement.

I. INTRODUCTION

GRASPING with parallel-jaw grippers has been well in-
vestigated and widely applied in robotic manipulation.

However, the study of anthropomorphic robotic hand remains
a challenge for the robotics community. Multi-finger grippers
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equipped with multiple actuated joints enable robots to perform
more advanced operations such as grasping for tool-use.

Traditional analysis-based methods for multi-finger grasp
generation rely on the assumption that object shapes and poses
are known a priori [1]–[3] that they can synthesize grasp con-
figurations with commonly used grasping metrics, e.g. force-
closure [4] and ε-metric [5]. However, these approaches are not
applicable to unseen objects. To generalize to unknown objects,
most current works utilize shape completion module [6], [7],
while these methods are time-consuming due to the huge search
space for high-DOF grippers.

In recent years, learning-based approaches have made sig-
nificant breakthroughs. Most learning-based grasping methods
estimate grasp poses directly from raw sensor inputs [8]–[11].
Nevertheless, most of these approaches focus on studying
parallel-jaw grippers with the majority of degrees of freedom
concentrated in the wrist joint.

Although it is challenging to predict high-DOF grasp poses,
researchers have proposed various solutions to this problem. [12]
uses a neural network to predict pixel-wise heatmap for multi-
finger placement but relies on a grasp planner to determine
the final grasp pose. [13], [14] train evaluation models with
grasps generated by a grasp sampler, which involves manually-
engineered mappings from observation to grasp. [15], [16] pro-
pose to identify a one-to-one mapping from objects to grasp
poses, which results in limited grasp postures. [17], [18] learn a
grasp-success probability prediction model with a voxel-based
3D convolutional neural network, while the hand needs to
approach the object with limited directions. [19] proposes a
“GenerAL” framework with reinforcement learning for multi-
fingered grasping in clutter, while encountering the sim-real gap
problem.

Meanwhile, a large body of works concentrated on hu-
man grasp estimation [20]–[23] achieve promising results on
daily objects [24]. These works focus on hand-object in-
teractions based on contacts, which is intuitive for human
grasping.

Inspired by this intuitive idea, we propose to generate diverse
sets of robotics grasps based on contacts. As shown in Fig. 1,
our method works in the following way: 1) Complete points are
first reconstructed by the point completion module; 2) The vari-
ational grasp generator estimates diverse sets of coarse grasps
given the complete object points; 3) Coarse grasps are further
refined by the iterative refinement module.

We evaluate our approach on the YCB [24] and EGAD! [25]
dataset. Experimental results show that our model can generate
diverse sets of grasps in terms of approach direction and posture,
and the refinement module helps to produce physically plausible
grasps. Furthermore, our method shows significant improvement
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Fig. 1. Grasping a target object with dextrous grasp configurations. Our
approach is able to generate diverse sets of grasps for unknown objects efficiently
in a coarse to fine manner.

compared to baselines in terms of time efficiency and grasp
success rate.

In summary, our primary contributions are: 1) A novel gen-
erative model for generating diverse sets of high-DOF hand
grasps based on hand-object interactions; 2) A useful iterative
refinement module for hand grasp refinement; 3) Significant
improvement on grasp generation for both seen and unseen
objects compared to the baseline methods.

II. RELATED WORK

Grasp Planners: Traditional grasp planners [1], [2], [4], [26]
assumed that the environment is fully perceptible. Various algo-
rithms [2]–[4] in this direction have been proposed to search
for high-quality grasps based on certain grasp metrics [5],
[27]. However, these methods are challenging for a number of
factors: 1) Environments are not fully perceptible, especially
for unstructured environments; 2) Time-consuming due to the
large searching space for high-DOF grippers. Recently, learning-
based grasp planners propose to predict grasps directly given
the partial observation. Most works following this way [8], [9],
[28], [29] focus on studying parallel-jaw grippers with different
kinds of inputs, e.g. RGB-D images or point clouds. [9], [29]
propose to conduct grasp pose detection as rectangle detection
in 2D space, the grippers are limited to approaching the target
object vertically. DexNet [28] collects numerous object mod-
els for GQ-CNN training and achieves state-of-the-art perfor-
mance. [8], [30] propose to estimate 6 or 7 DOF grasp poses
in cluttered scenes. However, for high-DOF anthropomorphic
hands, in addition to the wrist pose, remaining hand joints play a
more important role in human-like manipulation such as in-hand
manipulation.

Learning for hand-object interactions: The research of hand-
object interactions has been widely studied in the computer
vision community [20]–[22]. Recently, several datasets are pro-
posed for facilitating hand-object interactions research. [21],
[31], [32] label human hand grasps with captured images or
videos. [22], [33] propose to synthesize human hand grasps

Fig. 2. Five taxonomy for annotating grasps in simulation.

with GraspIt! [1], while the grasps may not look realistic in
general. Most of these methods propose to predict affordance
map for target objects, and predict grasps based on contacts
and penetration jointly. However, only a few researchers pay
attention to hand-object contacts in robotics grasping [34]–[37].
To our knowledge, [36] is the most similar work to ours, which
refines sampled grasps with human-demonstrated contact map
for functional grasping. In this work, we propose to generate
grasps with implicitly hand-object contacts based on a generative
model.

III. PROBLEM STATEMENT

This work concentrates on planning dextrous high-DOF
robotic hand grasping based on single view observation, which
implies generating physically plausible and collisionless grasp
configurations. More formally, our model M takes the observed
point cloud P as input and predicts high quality grasps. Each
grasp g is represented by a hand wrist pose p and a hand joint
configuration θ, i .e. g = {p,θ}. Hand wrist pose p is given in
SE(3), including the translation t = [tx, ty, tz] and orientation
quaternion q = [qw, qx, qy, qz]. Hand joint configuration θ is
denoted by the actual degree of freedom of the hand, θ ∈ R20

for HIT-DLR II Hand.

IV. DATASET GENERATION

In this section, we give a brief introduction for the procedure
of building our grasp dataset in the physics simulator.

Objects: We collect 300 objects from the dataset released in
the previous work [16]. Some of the objects are re-scaled to fit
for the HIT-DLR II Hand. All objects share the same coefficient
of friction (0.25) and density (1500 kg/m3).

Grasp Annotation: We adopt the commonly used approach
direction sampling scheme. It first samples a point on the surface,
then the hand approaches the object and executes a grasp attempt
with a predefined step interval. For each step interval, uniform
in-plane rotations are sampled. Five taxonomy shown in Fig. 2
are selected for annotation [38].

Grasp Labelling in Simulation: We build our synthetic grasp-
ing dataset in the physics simulator MuJoCo [39]. The physics
simulation consists of three steps: 1) Objects are fixed stationary
at first and the hand is initialized with a pre-grasp state, then the
hand approaches the object and executes a grasp attempt with a
pre-defined grasp taxonomy until the simulator reaches a stable
state. At this time, all fingers should contact the object or reach
their maximum joint angles. 2) Then all fingers keep the grasping
force while the gravity is present till the simulator reaches a
stable state or the object falls from the hand. 3) Unstable grasps
are filtered by shaking the hand and keep those grasps that
consistently keep the object in hand.
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Fig. 3. Overview architecture of DVGG network for dextrous grasp pose generation and refinement. Point Completion Module for generating complete point
clouds from partial object point clouds, shown in the left bottom. Iterative Refinement Module for grasp pose refinement, shown in the right bottom.

V. METHOD

In this section, we present the deep variational grasp genera-
tion network (DVGG) for generating dextrous grasp poses. The
overall pipeline is shown in Fig. 3. It consists of 3 submodules:
Object Point Completion, Variational Grasp Generator, and It-
erative Grasp Refinement.

A. Object Point Completion

Manipulation of anthropomorphic hands involves rich hand-
object contacts. Most of the existing methods take the assump-
tion that the target object model is known [20], [21], [36]. Some
of the current works propose to utilize multi-view inputs for ei-
ther object reconstruction [15] or feature aggregation [16], [23],
while multi-camera platform setup imposes strict restrictions for
real-world applications.

To this end, we propose to directly estimate the complete ob-
ject model from single-view input inspired by [34]. In practice,
we follow the method proposed by [40] and make two modifica-
tions during data synthesis to make it easy for real platforms
application: 1) Position of partial observed point clouds are
represented in camera coordinate system instead of the object
coordinate system; 2) Origin is normalized to the center of
the partial observed point clouds instead of the centroid of the
objects. We synthesize about 1 M partial observed point clouds,
and train the model from scratch. All objects come from [16].
Experimental results shown in Fig. 4 demonstrate that the model
trained on our dataset performs well on real robotic platform.

B. Variational Grasp Generator

The Variational Grasp Generator is based on Conditional
Variational Auto-Encoder (CVAE) [41] generative network. For
training our grasp generator, we use ground-truth complete
object point clouds as conditional information. In the training
stage, both the encoder and decoder are used to learn the grasp
generation task by optimizing the reconstruction errors with

Fig. 4. Qualitative results of Point Completion Module on unseen objects.
The first column shows the real-world object, the second and the third show the
partial observed and predicted complete point clouds, the last column shows the
reconstructed surface mesh.

hand-object interactions constraint; At testing time, only the
decoder is used. The network architecture is shown in Fig. 3.
Both the encoder and decoder of the generator are composed of
Multi-Layer Perceptrons (MLP).

During training stage, given the grasp configuration g ∈ R27

and the object point cloud Po ∈ RN×3 as input, we utilize
PointNet [42] to extract point cloud feature Fo and MLPs for
hand configuration g feature extraction Fh. These two features
are then concatenated together as the input for the encoder. The
encoder learn to map each pair of point cloud Po and grasp g to
a subspace in the latent space z, where P (z) ∼ N (0, I).

Given the sampled latent code z and the extracted feature Fo

as input to the decoder, the decoder learns to predict the hand
parameters g. Given g as input, the hand mesh is reconstructed
by a differentiable hand layer. This layer is designed based on

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on August 08,2023 at 03:24:53 UTC from IEEE Xplore.  Restrictions apply. 



1662 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

the forward kinematics of the hand. It takes the hand parameters
as input and outputs the mesh H = (V ,F ), where V and F
denote vertices and faces.

During testing stage, the encoder is removed, and a latent
valuez is randomly sampled from Normal Gaussian Distribution
N (0, I). Then the latent code z and the extracted object feature
Fo are concatenated together as input to the decoder. The
decoder predicts hand parameters for the differentiable hand
layer to reconstruct the hand model.

Given the above introduction for network architecture and
workflow of the grasp generator, we then present the detailed
objective function for training our network. If not specified, a
hat on top refers to predicted variables.

KL-Divergence: We use a KL-divergence loss to regularize the
distribution of latent code z, enforcing the latent code distribu-
tion Q(z|Po, g) to be close to a standard Gaussian Distribution.
This can be done by maximizing the KL-Divergence as follows:

LKL = −KL (Q(z|Po, g)||N (0, I)) (1)

Reconstruction: We design the reconstruction objective based
on the reconstructed hand mesh. It consists of the following
terms: hand mesh vertices displacement and joint angles θ error.
We adopt the L2 loss for optimizing Euclidean distance of the
vertices and the L1 loss for the joint angles. The losses are
formulated as follows:

LV =
1

N

N∑
i

||V̂ i − V i||22

Lθ = |θ̂ − θ|
LR = λV · LV + λθ · Lθ (2)

The reconstruction loss LR include two terms, LV for hand
mesh vertices reconstruction andLθ for hand joint angles predic-
tion. Where N is the number of hand mesh vertices, V denotes
the hand mesh vertices, θ denote the hand joint angles. λV and
λθ are constants for balancing the losses.

Hand-Object Contact: A physically plausible grasp should
hold the object tightly. Intuitively, we propose to model reason-
able grasp based on contacts in two folds: Which part of the
object that the fingers should be in contact with? And Which
part of finger should grasp? Specifically, given the ground-truth
hand-object grasp, both object affordance points Oc and hand
grasp vertices Hc can be derived from the distance between
object points and hand vertices, as shown in Fig. 5(a). We denote
the object point subset that is close enough to the hand vertices
as Oc, and the contact points on hand that is close enough to the
object points as Hc. We formulate the contact losses as follows:

LO =
1

|Oc|
∑
p∈Oc

(f(p|V̂ )− f(p|V ))

LH =
1

|Hc|
∑
v∈Hc

(f(v̂|Po)− f(v|Po))

LC = λO · LO + λH · LH (3)

Where f(·|·) refers to Signed Distance Field (SDF), the
magnitude of a point represents the distance to the surface
boundary and the sign indicates whether the region is inside
(-) or outside (+), e.g . f(p|V ) outputs the signed distance for
point p to hand vertices set V . The hand-object contact loss

Fig. 5. (a) An example of the hand-object contact map, the red part shows
the affordance map of the object, the orange part shows the contact region on
the hand. (b) Simplified mesh of the HIT-DLR II Hand model and the sampled
potential grasp points (red).

Fig. 6. Scatter chart shown the influence of number of dimensions.

LC includes two terms, LO for object affordance loss and LH
hand contact loss. The loss LO encourages the object affordance
map to be consistent with the ground-truth affordance map, and
the loss LH penalizes the difference between the predicted hand
contact region and the ground-truth. λO and λH are constants
for balance.

Interpenetration: In order to generate realistic hand grasp, we
need to take consideration of physical constraints, i .e. interpen-
etration between hand gripper and the target object. To alleviate
hand-object intersection, we formulate interpenetration loss as
follows:

LP =
∑
p∈Po

min (−〈1, f(p|V )〉, 0) (4)

Where 1 is a 2D one-vector, and 〈·, ·〉 denotes a dot product.
The interpenetration loss LP actually penalize the negative sum
of signed distances of the object point to the hand mesh.

Finally, the overall loss are summarized as follows:

Lgrasp = λKL · LKL + LR + LC + λP · LP (5)

where λKL and λP are constants to balance the losses.

C. Iterative Grasp Refinement

Although our model can predict realistic grasps for most of
the objects in our dataset, two failure cases remains, as shown
in Fig. 8: 1) Penetration with thin-walled objects, such as bowls
and mugs; 2) Hand-object contact is not tight enough, causing
grasp failures. Considering the above drawbacks when operating
on the real robotic platform, we further refine the grasp quality
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Fig. 7. Qualitative results for the latent codes.

Fig. 8. Qualitative results of the variational grasp generator. The red circles
mark the parts with collisions and the brown circles mark the parts with no tight
contacts.

to avoid collisions. To achieve this, we propose to improve
the grasp quality by penalizing hand-object penetration and
optimizing the grasp contact energy in our refinement module.
Specifically, given the predicted grasp pose of the grasp sampler
and complete point cloud, the grasp refinement module takes
as input the predicted grasp g and hand-object contact distance,
then predicts the residual grasp Δg transformation. In this way,
the refinement module can work in an iterative manner:

LCE = min
∑
p∈Hg

I(f(p|V ))

I (f(·|·)) =

{
f(·|·) if f(·|·) < T
T, otherwise.

LD = D(g, g∗)

Lrefine = λCE · LCE + λP · LP + λD · LD (6)

The refinement lossLrefine includes three terms:LCE for op-
timizing the grasp distance contact energy by attracting potential
grasp points p ∈ Hg to be close to the target object, which helps
to produce wrap-around grasps. LP for penalizing hand-object
interpenetration and LD regularize the refined grasp g∗ should
be close to the input grasp g. I denotes the Indicator function for
judging whether the hand grasp points are close enough, T is the
distance threshold, we set it to 2 centimeters. We defineD(g, g∗)

Fig. 9. Cases of refinement.The first column shows coarse grasps, the right
columns show grasps after 1, 2 and 3 times refinement.

TABLE I
HYPER-PARAMETERS SETTING

TABLE II
EFFECT OF ITERATIVE REFINEMENT. ↑: HIGHER THE BETTER; ↓: LOWER THE

BETTER

TABLE III
ABLATION STUDY ON VARIOUS LOSS FUNCTIONS

as the distance measurement function, where g is the predicted
hand grasp of the sampler, g∗ is the output grasp configuration
of the refinement module. We manually label N = 50 potential
grasp contact points Hg on the gripper surface, as shown in
Fig. 5(b).

Qualitative results shown in Fig. 9 show our refinement algo-
rithm can deal with inaccurate grasp postures and refine them to
the pose with fewer collisions and higher quality.

VI. EXPERIMENTS

We evaluate our model both in simulation and on a real robot
platform consisting of a UR5 robotic arm equipped with a HIT-
DLR II Hand.

A. Implementation Details

We sample 2048 surface points for each object during training
the variational grasp generator, and these points are sampled
using the Farthest Point Sampling (FPS) method. During the
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TABLE IV
COMPARISON WITH GRASPIT! IN SIMULATION. PC DENOTES PREDICTED COMPLETE OBJECT POINTS AS INPUT, PO FOR PARTIAL OBSERVED POINTS, GT FOR

GROUND-TRUTH OBJECT POINTS. * DENOTES ADJUSTMENT WITH ITERATIVE REFINEMENT

Fig. 10. Real setting of our robotic grasping experiments. (a) Robotic grasping
experiment setup with HIT-DLR II Hand and UR5 robotic arm. (b) Objects used
in our robotic experiments. Left part shows similar objects, right part shows
novel objects.

TABLE V
RESULTS OF ROBOTIC PLATFORM EXPERIMENTS

inference stage, 2048 points are sampled among the complete
points predicted by the point completion module. The variational
grasp generator and refinement network are trained for 250 and
100 epochs respectively with the learning rate set to 0.002 at start
and divided by 10 when the validation error plateaus. Batch size
is 512. We train our model on a RTX-3090 GPU. The dimension
of the latent space is set to 4 for real robot platform evaluation.
Other hyper-parameters for training our network are listed in
Table I

B. Evaluate Metric

We use three quantitative metrics to evaluate our approach
consistently with previous literature [11], [33].

Penetration for measurement of the penetration between
the hand mesh and the target object. It consists of two terms:
penetration depth and volume. We follow the implementation
used in [20]. If the hand and the object collide, the penetration
depth is the maximum of the distances from hand mesh vertices
to the object surface.

Success Rate (SR) is used to measure the stability and quality
of the generated grasps, which is commonly used in grasping
tasks.

Coverage Rate is utilized to measure the diversity of the
generated grasps and measures how well the generated grasps
cover the space of positive graspsG∗. We follow the same setting

in [11], that only the distance in the translation of the grasps is
used for evaluating whether a grasp is covered or not. Grasp g
no further than 2 cm away from any of the grasp ĝ ∈ G will be
considered as a hit.

Time Cost is utilized to measure the time efficiency.

C. Simulation Experiments

We carry out most of our experiments in the physics simu-
lator [39], since we can access complete object models which
helps to evaluate the grasp sampler and the iterative refinement
module. In addition, the gripper can move freely in simulation
environments that we do not take motion-planning for robot
arm in simulation. 58 objects from YCB dataset (seen) and 48
objects from EGAD! (unseen) are selected for comprehensive
evaluation.

Why is VAE needed: Firstly, our method generates, on average,
a grasp in around 0.16 seconds compared to the 35+ seconds
required by GraspIt!, as shown in Table IV. VAE is 228 times
faster. Secondly, given the completed object model, sample a
single grasp candidate using approach-based sampling method is
inefficient, diverse grasps can be obtained by choosing different
approach vectors, while graspable approach direction can be
sparse for certain objects e.g. mug and bowl. To encode the
space of successful grasps efficiently, we use the VAE network.

Dimensionality of Latent Space: The dimensionality of the
latent space is a key hyper-parameter influencing the qual-
ity of the generated grasps when training VAE. In general, a
high-dimensional latent space helps to improve the capacity for
reconstruction, but it can also lead to increasing the possibility
of over-fitting. To study the influence of dimensionality of the
latent space, we show a quantitative analysis with the increasing
number of dimensions. Specifically, 1000 grasps are sampled
for calculating the Success Rate and the Coverage Rate in
Fig. 6. As shown in the figure, a dimensionality of four achieves
the most appropriate balance between the Success Rate and
the Coverage Rate. We choose this setting for all experiments
afterwards. In Fig. 8, qualitative results show that our model
can generate diverse sets of grasp for a same object geometry.
In Fig. 7, qualitative results demonstrate what happens to the
grasps when interpolating latent codes. For each dimension of
the latent code, we sample 7 instances uniformly and normalize
the color from blue to red, all other dimensions are set to 0.
The top row shows the top view, the bottom row shows the side
view. Some dimensions of the latent space encoding produce
smooth interpolations between samples. For example, the first
column seems to encode smooth translation in the z-axis, the
fourth column seems to encode smooth rotation in the z-axis, the
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Fig. 11. Qualitative grasps generated by DVGG on 20 real objects. The upper row shows grasps for the similar objects, the bottom row shows grasps for the
novel objects. Failure cases are shown in red boxes.

second and third column both may encode approach direction
and grasp position jointly.

Effect of Iterative Refinement: To demonstrate the effective-
ness of our proposed refinement module, we compare the perfor-
mance of Success Rate and penetration and for both the grasp
generator and refinement module on YCB dataset. As shown
in Table II, the successful rate of the grasp configurations after
refinement has 12.4% and 16.0% improvement respectively over
the coarse grasps generated by the grasp sampler with one and
two times refinements, and improvement gets saturated with
higher iterations. The experimental results also demonstrate that
the iterative refinement model helps in alleviating interpenetra-
tion between the hand model and the target objects. Fig. 9 shows
four qualitative cases during the iterative refinement process.

Learned Grasp Sampler Vs. GraspIt! To illustrate the effi-
ciency and quality of the generated grasp of our model, we follow
the similar setting in [34] that we sample 360 grasp candidates
on average in GraspIt! [1] within 75000 steps. Most of the grasp
generated by GraspIt! are of low quality, only the top 20 grasp are
used for evaluation. As for our method, we randomly sample 360
grasps for computing the sampling time and 20 random grasps
of them to compute other metrics. Experimental results listed in
Table IV show that our method outperforms baseline by a large
margin in terms of grasp quality and Success Rate for both the
seen and unseen objects. The results also demonstrate that: 1)
the model trained with complete object point clouds outperforms
the model trained with partial observed point clouds on the YCB
dataset 2) the iterative refinement module can improve the grasps
generated by GraspIt! as well.

Effect of Various Loss: To study the impact of various loss
functions, we conduct an ablation study on these loss terms.
As shown in Table III, we train our model with one of these
loss terms removed, and only one time refinement is applied.
We show the performance of Success Rate and Penetration on
the YCB dataset. As expected, the network trained without
penetration loss LP achieves the lowest performance, since
the hand model often intersects the object. The model trained
without hand object contact loss LC achieves the second lowest
performance in terms of Success Rate, while it intersects the
object slightly. We believe this is due to the lack of contact loss,
which results in most grasps being far from the object. The model
trained without regularization loss LD performs slightly better
than coarse grasps generated by the variational grasp generator.
The network trained with no contact energy loss produces the
highest Success Rate, since the contact energy loss is designed
to generate tighter hand-object contact, which can not help to

optimize unreasonable grasp, e.g. grasps far away from objects
and grasps with collisions.

D. Robotic Experiments

We validate the effectiveness and reliability of our method
in HIT-DLR II Hand with a UR5 robot arm. We capture the
point cloud with the Ensenso N35 camera. Objects are presented
to the robot individually on top of the foam pad, as shown in
Fig. 10(a). We keep the following setting in actual robot platform
experiments: 1) The camera captures the scene from the backside
at a 60-degree viewpoint; 2) Objects are randomly placed within
a 25x25 cm square area with stable poses and their point clouds
segmented by subtracting the background; 3) 10 similar and 10
novel objects are selected to evaluate the generalization ability
of the proposed network, as shown in Fig. 10(b); 4) We use the
point completion method [40] described above; 5) Grasps cause
collision with the ground will be filtered out. 6) We employ
MoveIt for path planning of the UR5 robot arm. 7) We employ
joint position control with extra +10 degrees for each flexion
joint.

We compare DVGG to GraspIt! and PointNetGPD [43].
GraspIt! requires triangle-mesh based object model, we fol-
low the poisson surface reconstruction algorithm to complete
the target surface. Since PointNetGPD is proposed to classify
parallel-jaw grasps, we take the following modifications: 1) We
use GraspIt! to sample grasps. 2) Given the sampled grasps, we
crop the point clouds within fixed radius to train the classification
model proposed by [2].

The experimental procedure is as follows: 1) We generate
15 grasps per object for each algorithm; 2) Only physically
reachable grasps will be executed. For GraspIt!, we adopt the
widely used ε-metric to select grasps. As for PointnetGPD and
our method, the first physical reachable grasp is executed. 3) A
grasp will be classified as a successful grasp if the robot hand
can grasp the target object and lift it to the predefined position
without dropping it during translation.

As shown in Table V, our method outperforms baseline meth-
ods by a large margin, which demonstrates the superiority of our
method. Qualitative results shown in Fig. 11 demonstrate that
DVGG is able to generate diverse sets of grasps in terms of
posture and grasping area.

In fact, DVGG also produced some failed grasps. Two exam-
ples are shown in Fig. 11. The main reason causing grasp failure
is that unstable grasps require large frictional forces to lift the
target object. As shown in the second example from the right in
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the bottom row, the failure grasp is caused by the low friction
between the hand and the target object. Another reason for grasp
failure is collision between the hand and the target object. The
failure shown in the rightmost image of the bottom row is caused
by displacement of the object due to slight collision during hand
approaching.

VII. CONCLUSIONS

In this paper, we propose DVGG for generating diverse sets
of grasps for high-DOF anthropomorphic robotic hand. Our
method focuses on hand-object interaction constrain, which
helps to estimate physical plausible grasps. Meanwhile, we build
a large-scale synthetic grasping dataset with 300 objects with
various shape. Experiments show that our model trained on
the synthetic dataset performs well in real-world scenarios and
outperforms the baseline by a large margin.
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